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a b s t r a c t

An immersed-boundary method, previously developed for flow-field simulation, is extended to study
heat-transfer problems of flow over a circular cylinder. The Dirichlet-type isothermal temperature
boundary conditions and the Neumann-type iso-heat-flux boundary conditions are both implemented.
To verify the accuracy of the simulation method, L2-norm are computed to test the order of accuracy
of the scheme. Numerical solutions are then further validated by comparing simulated temperature dis-
tributions and local convective-heat-transfer coefficients in flow over a stationary circular cylinder with
data in the literature. Comparisons are made at different Reynolds-number flows and under different
types of temperature boundary conditions. Finally, the effect of heat-transfer enhancement for flow over
a transversely oscillating cylinder is investigated.

Published by Elsevier Inc.
1. Introduction

This paper describes an immersed-boundary-like approach to
modeling and simulating heat-transfer problems with fluid–struc-
ture interactions. Because we are interested in forced-convection
problems, the effect of buoyancy and compressibility are
neglected. Therefore momentum and temperature equations are
de-coupled and only one-way interaction from the momentum
equations to the temperature equation is considered.

Immersed-boundary (IB) methods are typically designed for
fluid–structure interaction problems. Almost all previously devel-
oped IB methods discretize the equations of motion for the fluid,
i.e. Navier–Stokes equations. Peskin (1972) first developed the IB
method to flow around the flexible leaflet of a human heart. More
recent developments and reviews of this type of IB method have
been discussed by Lai and Peskin (2000) and Peskin (2002). Gold-
stein et al. (1999) developed a feedback-force IB method for virtual
boundary problems. Saiki and Biringen (1996) used this feedback-
force IB method to calculate low Reynolds-number (Re 6 400) flow
over a stationary, rotating, and horizontally oscillating cylinder.
They showed that the feedback-force IB method was capable of
handling solid boundary problems, including moving boundaries.
Feedback-force IB methods sometimes have severe stability prob-
lems and require two empirical constants in the force term. A
new IB method, the direct-forcing IB method, was developed by
Mohd-Yusof (1996). The force term generated in this manner di-
rectly compensates for the errors between the calculated velocities
r Inc.
and the desired velocities on the boundary. With this method, the
computation no longer suffers from stability limitations, and no
empirical constants are needed to form the forcing term as in the
scheme of Goldstein et al. (1999). Direct-forcing IB methods have
been used successfully to simulate flow around spherical particles
in particle-gas two-phase flow (Mohd-Yusof, 1996), 3-D complex-
flow problems (Fadlun et al., 2000 and Mohd-Yusof, 1997), and
flow with a moving object (Verzicco et al., 2000). Other direct-forc-
ing methods incorporate different ways of treating IB conditions
(Mittal and Iaccarino, 2005; Dong et al., 2006; Ravoux et al.,
2003; Lima E Silva et al., 2003 and Tseng and Ferziger, 2003). But
the typical direct-forcing IB method also suffers some drawbacks,
such as complex treatments of the IB, and IB resolution depen-
dence to the grid resolution. Zhang and Zheng (2007) developed
an improved IB method which overcame drawbacks from both
methods, and simulation results of flow over an oscillating cylinder
were used to investigate the oscillating frequency and amplitude
effects on lift and drag of the cylinder (Zheng and Zhang, 2008).

Although IB methods are widely used for fluid flow problems,
few are used for heat-transfer problems. Kim and Choi (2004)
and Tanno et al. (2006) applied the IB or IB-like methods to heat-
transfer problems of flow over one or multiple cylinders. In both
work, local Nusselt number distribution on the cylinder surface
has been studied. However, only the Dirichlet-type isothermal IB
condition has been implemented for the study of the convective-
heat-transfer coefficient. Pacheco et al. (2005) implemented the
IB method for incompressible flows with heat-transfer for both
Dirichlet- and Neumann-type IB conditions. Their implementation
was on a non-staggered grid and used a scheme similar to the di-
rect-forcing method of Mohd-Yusof (1996), and thus inherited
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similar drawbacks. Pan (2006) introduced another recent IB imple-
mentation for heat-transfer problems. He used the volume-of-body
(VOB) function to represent the temperature-immersed-boundary.
But with VOB representation, the IB is not well conformed with the
actual geometry, and the result shows a stair-step-like zigzag con-
tour. Therefore, his method requires a very small grid size. No de-
tailed study exists of local heat-transfer around the cylinder in the
studies of Pacheco et al. (2005) and Pan (2006). Neither of these
studies (Kim and Choi, 2004; Tanno et al., 2006; Pacheco et al.,
2005; Pan, 2006) applied motion to the immersed object. Besides
these implementations for solid-boundary problems, there have
been several implementations for flexible-boundary problems,
such as the study of heat-transfer for liquid droplet during defor-
mation by Francois and Shyy (2003).

Numerous experimental and numerical studies of heat-trans-
fer over a stationary circular cylinder have been conducted.
Experimentally, Churchill and Bernstein (1977), Eckert and Soe-
hngen (1952), and Roshko (1961) are among those. Numerically,
studies from Momose and Kimoto (1999) and Bharti et al.
(2007) are two with a similar Reynolds-number range compared
to the present study. For the study of heat-transfer over an
oscillating cylinder, literature data are relatively fewer. Experi-
mentally, Sreenivasan and Ramachandran (1960) is among the
earliest studies for the heat transfer from an oscillating cylinder
in cross-flow. Due to the small oscillating frequencies used in
their experiments, transverse oscillations had no effect on
heat-transfer. Recently, Park and Gharib (2001) and Pottebaum
and Gharib (2006) investigated the effects of transverse oscilla-
tions on the heat-transfer from a cylinder in cross-flow. How-
ever, no local heat-transfer-coefficient measurement was
carried out in their research. Bouvier et al. (2005) describes an
experimental study of heat-transfer in oscillating flow inside a
cylindrical tube. Numerically, a finite element study was per-
formed by Fu and Tong (2002) to study the flow structure and
heat-transfer characteristics of a heated transversely oscillating
cylinder in a cross-flow.

The purpose of this paper is to present an improved IB method
for heat-transfer applications of incompressible fluid flow with
constant properties, zero internal-heat generation, and negligible
viscous heating effect. Note that the model is developed for appli-
cations with low-speed and low-viscosity fluid flows where vis-
cous heating effects are very small. Viscous heating effects were
initially included for several of the cases studies in this paper,
and the results indicated that the viscous heating effects were in-
deed negligible. The present method adapts the IB approach of
Zhang and Zheng (2007) for the motion of fluid flow and inherits
such advantages: easy coding; independence of IB points to grid
points, thus ensure the boundary conditions not only on the IB
points intersecting with grid points, but also on the region in-be-
tween grid points; better conformation to the actual geometry;
easy implementation with the weighting function; and increased
accuracy without using higher-order schemes. Both Dirichlet-type
isothermal and Neumann-type iso-heat-flux IB conditions were
implemented. To verify the accuracy of the simulation method,
heat conduction problems with analytical solutions were first
computed. Numerical solutions were then further validated by
comparing simulated temperature distributions and local convec-
tive-heat-transfer coefficients in flow over a stationary circular
cylinder with data in the literature. Evidences of good agreement
between the current results and previous literature data were
found. Finally, the effect of heat-transfer enhancement for flow
over a transversely oscillating cylinder was investigated. The
present study also provides an understanding of the relationship
between surface heat transfer and flow characteristics such as
Reynolds number, vortex-shedding pattern, IB conditions, and
motion of the immersed body.
2. Description of the IB method

In this paper, incompressible forced-convection problems are
studied. The governing equations consists of Navier–Stokes equa-
tions and the temperature equation. The immersed-boundary is
represented by momentum-forcing and energy-forcing terms.
The focus of the paper is on energy-forcing and its treatments for
different types of IB boundary conditions.

2.1. Governing equations and computational schemes

In the IB method, equations for unsteady incompressible fluid
flow with constant properties, zero internal heat generation, and
negligible viscous heating effect are

r � u ¼ 0; ð1Þ
ou
ot
þ u � ru ¼ �rP þ 1

Re
r2uþ fm; ð2Þ

and

oT
ot
þ u � rT ¼ ar2T þ fe: ð3Þ

In the above equations, cylinder diameter D, free-stream velocity
U0, and density q are used for non-dimensionalization. Because of
two different types of temperature boundary conditions are to be
simulated, two different characteristic parameters are used to non-
dimensionalize temperature. For the fixed surface-temperature
boundary condition, temperature is non-dimensionalized using
(Tw � Tinf), where Tw and Tinf are the cylinder surface-temperature
and ambient temperature, respectively. For the fixed surface-heat-
flux boundary condition, temperature is non-dimensionalized using
qwD/k, where k is the thermal conductivity, and qw is the heat-flux
on the cylinder surface. For insulated boundary conditions, temper-
ature is non-dimensionalized using Tinf only. In Eq. (3), the param-
eter a, the inverse of the Peclet number, is defined as 1/PrRe, where
Pr and Re are the Prandtl number cpl/k and Reynolds number U0Dq/
l. In Eqs. (2) and (3), fm and fe are the momentum- and energy-forc-
ing terms representing the virtual body force. Note the one-way
interaction from velocity to temperature due to de-coupling be-
tween the momentum and energy equations.

Details of the computational scheme for the velocity field and
determination of fm have been shown by Zhang and Zheng (2007).
The governing equations, Eqs. (1) and (2), are discretized using the
first-order time-marching, with a semi-implicit term for the diffu-
sion terms and the second-order Adams-Bashforth for convection
and central differencing for diffusion. The procedure involves a
two-step, predictor–corrector procedure. The two Poisson equations
at each time step are solved using the Fishpack subroutines (1979)
and Swarztrauber and Sweet (1979). Similarly for the temperature
equation, Eq. (3) is also discretized using the first-order time-march-
ing, with the second-order Adams-Bashforth for the convection
terms and central differencing for the conduction terms.

The velocity predictor equation is

u� ¼ un þ dt � 3
2

Sn � 1
2

Sn�1
� �

�rP� þ 1
2Re
r2ðun þ u�Þ þ fm

� �
;

ð4Þ

where rP* is the pressure estimation

r2P� ¼ �r � ðun � rÞun � fm½ �; ð5Þ

and S is the convection term defined as

S ¼ ðu � rÞu: ð6Þ

Then, with the following correction step, the real time velocity and
pressure are given by:
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Fig. 1. Sketches showing interpolation/extrapolation between IB points and grid
points near the IB.
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unþ1 ¼ u� � r/; ð7Þ

and

Pnþ1 ¼ P� þ /; ð8Þ

where / is the solution of the modified pressure Poisson equation
(PPE)

r2/ ¼ ru�: ð9Þ

The IB method is intended to use a force term to ensure correct
velocity and temperature values on the boundary, in place of spec-
ifying the boundary conditions. The conservation laws are not al-
tered in this method. Therefore, no additional special treatment is
needed to enforce conservation laws at the boundary interface. A
usual implementation of the governing equations, such as pressure
correction / in Eq. (9), is able to ensure the local conservation of
mass (continuity).

The temperature equation at time step n + 1 is

Tnþ1 ¼ Tn þ dt � 3
2

Sn
T �

1
2

Sn�1
T

� �
þ ar2Tn þ fe

� �
; ð10Þ

where ST is the convection term defined as

ST ¼ ðu � rÞT: ð11Þ

In the spirit of the IB method, IB points need not coincide with grid
points. A bilinear interpolation (Saiki and Biringen, 1996) is used to
determine the IB velocity and temperature U and T at one IB point,
(xs,ys), surrounded by four grid points denoted by indices (i, j),
(i + 1, j), (i, j + 1) and (i + 1, j + 1)

UðxsÞ ¼
Xiþ1;jþ1

i;j

Di;jðxsÞun
i;j; ð12Þ

TðxsÞ ¼
Xiþ1;jþ1

i;j

Di;jðxsÞTn
i;j; ð13Þ

where the weighting function D is defined as

Di;jðxsÞ ¼ dðxs � xiÞdðys � yiÞ: ð14Þ

In Eq. (14), xs and ys are the x and y locations of the IB point, and

dðxs � xiÞ ¼ ðxs � xiþ1Þ=ðxi � xiþ1Þ if xi < xs;

dðxs � xiÞ ¼ ðxs � xi�1Þ=ðxi � xi�1Þ if xi > xs;

dðxs � xiÞ ¼ 1 if xi ¼ xs:

It needs to be noted that this weighting function is not only used to
calculate the IB velocity and force, but also used to determine the
surrounding grid points to an IB point. This is because the function
only has non-zero values as the distance between a grid point and
an IB point is within one grid spacing.

The forcing terms, fm and fe, are designed to minimize the error
at the boundary between the actual (computed) values at the new
time and the desired (physical) values on the boundary surface,
and they are non-zero only at a layer of grid points immediately in-
side the boundary with at least one neighbor in the fluid, named
internal layer. The forcing terms are expressed as

fmði;jÞ ¼
1
dt

1
Nb

XNb

n¼1

Di;jðxsÞ½V � UðxsÞ� þ
3
2

Sn � 1
2

Sn�1
� �

i;j

� 1
Re
ðr2unÞi;j þrPi;j; ð15Þ

feði;jÞ ¼
1
dt

1
Nb

XNb

n¼1

Di;jðxsÞ½Tw � TðxsÞ� þ
3
2

Sn
T �

1
2

Sn�1
T

� �
i;j

� aðr2TnÞi;j; ð16Þ
where Nb is the number of IB points affecting the current grid point
at (i,j), V and Tw are the desired boundary velocity and temperature,
and U(xs) and T(xs) are the computed boundary velocity and tem-
perature. Note that Tw is a constant for Dirichlet boundary condition
and changes with time and location for Neumann boundary condi-
tion. Since IB points do not necessarily coincide with the grid points,
the computed boundary values are first interpolated from the grid
points to the boundary points using Eqs. (12) and (13). Then in
Eqs. (15) and (16), the differences between the desired boundary
values and the computed boundary values are extrapolated back
to the internal layer grid points, using the same bilinear weighting
functions to determine the direct-forcing term.

Fig. 1 shows the interpolation and extrapolation between IB
points and grid points near the IB. The IB value at one IB point,
Point A, is determined by temperatures of those closest grid points
(Points 1–4) using the weighting function, Di,j. Then the IB forcing
is mapped back to the internal layer instead of all grid points near
the IB, as in the traditional feedback-force IB method (Saiki and Bir-
ingen, 1996). In Fig. 1, grid points having IB forcing applied are
points 2 and 7–10, not all points from 1 to 10. This is to avoid
numerical thickening of the boundary curve so that a sharp bound-
ary interface can be achieved. From another point of view, the
external layer is part of the flow-field and should not be ‘‘hard-
ened” to be part of the boundary. Under this treatment, accuracy
in the vicinity of the IB can be greatly improved, compared to tra-
ditional feedback-force methods.

The way that points 2 and 7–10 are selected is based on the
weighting function Di,j in Eq. (14), as stated previously. From Eq.
(14), if a grid point and an IB point are within one grid spacing,
then Di,j > 0, otherwise Di,j = 0. All the grid points that satisfy this
criterion are treated as the nearby grid points, which are points
1–10 in Fig. 1. And among those points that are interior to the
boundary, points 2 and 7–10, are thus selected to apply the bound-
ary force on.

As with all other direct-forcing IB methods, the IB resolution is
determined by the grid resolution. Therefore, the resolution of the
IB points are limited by the resolution of the grid lines near the
boundary. With the interpolation procedure used in the current
method, the points selected on the boundary (with locations de-
noted as xs) do not need to coincide with the grid points or inter-
cepted points, as shown in Fig. 1. In order to increase the resolution
on the boundary only, many more points (in fact, an arbitrary num-
ber of points) in between the intercepted points can be used to rep-
resent the IB points, and to be used later for extrapolating forcing
back to the grid points. In this sense, the number of boundary
points used, Nb, can be independently increased without being re-
stricted to the resolution of the computational grid for the flow. For
example, in Fig. 1, we can add another boundary point, Point B,
other than Point A, but still be surrounded by the same group of
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grid points 1, 2, 3, and 4. Difference in values between Point A and
Point B are due to the difference in weighting functions. By defin-
ing different weighting functions for different IB points to be used
with the same group of grid points, many different boundary
points can be added. With this procedure, influence of the IB sur-
face can be better represented, because smoothness and accuracy
of the IB surface can be independent of grid size. There are no lim-
its on how many points can be distributed on the boundary. Of
course, the increase of accuracy can reach a limit by adding bound-
ary points without increasing computational grid resolution. How-
ever, within such a limit, local accuracy on the boundary can be
improved by using more IB points to represent the boundary. A de-
tailed study of the IB resolution requirement has been provided by
Zhang and Zheng (2007). To prevent the information ‘‘leak” on the
IB, the number of IB points should be at least two times the num-
ber of grid cells intercepted. In the current simulation cases, 960 IB
points are used to represent the circular cylinder, which is about
six times the number of intercepted grid cells with size of 0.025.

For direct-forcing methods, calculation of the force does not
influence stability of time integration, as stated in (Fadlun et al.,
2000). Therefore, the stability requirement for the temperature
equation is based on a fully explicit scheme for a two-dimensional
convection-diffusion equation (Ravoux et al., 2003). The time step
needs to satisfy

dt < min
h2

4a
;

2a
ðu2 þ v2Þ

" #
; ð17Þ

where h is the grid size. The first restriction in Eq. (17) is for conduc-
tion and the second restriction is for convection. Note that the sta-
bility requirement for momentum equations was discussed in
(Zhang and Zheng, 2007), and is expressed as

dt < min
h2Re

4
;

2
ðu2 þ v2ÞRe

" #
: ð18Þ

Similarly, the first restriction in Eq. (18) is for diffusion while the
second for convection.

2.2. Dirichlet- and Neumann-type IB conditions

The specified IB temperature value is the desired boundary tem-
perature Tw for the Dirichlet-type IB condition. It is uniform on the
IB surface, and thus is called the isothermal condition. The differ-
ence between the specified temperature and the computed tem-
perature constructs the IB forcing. Conceptually, all of the IB
methods are originally designed for the Dirichlet-type boundary
condition.

For the Neumann-type boundary condition problems, some
manipulations of the boundary condition are necessary to apply
the IB method. Since uniform heat-flux is specified instead of uni-
form temperature value on the boundary, the Neumann-type
boundary condition is also called iso-heat-flux boundary condition
in this study. For the iso-heat-flux boundary condition problems,
Tw in Eq. (16) is not a constant and it has to be computed from
the constant heat-flux. Heat flux is defined as q = �(dT/dn)IB = con-
stant, thus the uniform heat flux is equivalent to the uniform nor-
mal temperature derivative. To deal with the normal temperature
derivative, an additional layer of virtual points is defined, and is
placed one-grid spacing (h) distance outside of the physical IB.
The number of virtual points on the new layer is the same as the
number of IB points. These two sets of points are aligned in the sur-
face normal direction. Therefore, for any given pair of the IB and
virtual points, the temperature derivative is defined as

� dT
dn

� �
IB
¼ TwðxsÞ � TðxlÞ

h
; ð19Þ
where Tw(xs) and T(xl) are the temperature values on the IB layer xs

and the additional virtual layer xl. Temperature values of the virtual
layer points are computed using the same interpolation as in Eq.
(13) for IB temperature calculations. For the Neumann-type IB con-
dition, temperature values on every IB point need to satisfy the rela-
tion in Eq. (19) at any given moment. So the desired IB Tw in Eq. (16)
at time n + 1 is determined by

TwðxsÞnþ1 ¼ �h
dT
dn

� �
IB
þ TðxlÞn: ð20Þ

Note that �(dT/dn)IB is the specified heat-flux. Unlike the Dirichlet-
type IB condition, the desired IB Tw in Neumann-type IB condition
changes with time and location.

From Eq. (16), the values of internal layer points on which the
forcing are applied, are the forced values to enable the desired IB
values. This layer is a boundary shared by both interior and exte-
rior domains. From the nature of the present method, the internal
layer acts as a shield layer preventing communication between fur-
ther interior points and exterior points. With this shield layer, the
artificial interior region, sometimes with unrealistic data values,
does not influence the physical exterior domain. For example, with
heat-flux across the IB surface, there might be unwanted heat
accumulation in the interior region. But with the present method,
as long as the internal layer is well defined, the solutions outside
the IB surface are not affected by the unreal interior solutions. This
is another major advantage of the direct-forcing type of IB
methods.

For both types of boundary conditions, the local Nusselt number
around the cylinder surface is defined as HD/k, where H is the local
heat-transfer coefficient. In this study, it is calculated based on
nondimensionalization. For the isothermal boundary condition, it
is expressed as

Nulocal ¼ �
dT
dn

; ð21Þ

where n is the normal direction from the cylinder surface. In the cal-
culation of surface derivative dT/dn, again, the additional layer of
points one-grid spacing outside the cylinder is defined and their dif-
ferences to the surface values divided by the distance are the dT/dn
values. For the iso-heat-flux boundary condition, the local Nusselt
number on the cylinder surface is

Nulocal ¼
1
T
; ð22Þ

where T is the dimensionless surface-temperature interpolated
using Eq. (13).

3. Results and discussion

In this section, convection heat-transfer problems are simulated
using the IB method presented in the previous section. Heat con-
vection with flow over a stationary or oscillating cylinder are se-
lected as the target cases. The simulation results are compared
with results from previous experimental and numerical studies
in the literature. Isothermal and iso-heat-flux IB conditions are
implemented and studied. In this paper, the Reynolds-number
range is from 20 to 218. The Prandtl number is fixed at 0.7 for all
cases. The staggered grid arrangement is applied for all convection
cases in this paper. Cylinder diameter D is 1, as well as the free-
stream velocity U0. The computational domain size is 25.6 � 12.8,
with the center of the cylinder located at (6.4,6.4). For boundary
conditions at the inlet, u = 1, v = 0, and oP/ox = 0 are prescribed.
On the top and bottom boundaries, ou/oy = 0, v = 0, and oP/oy = 0
are imposed. At the outlet, the two velocity components are as-
sumed to have zero-normal derivatives, ou/ox = 0 and ov/ox = 0,
and P = 0. Although the outlet boundary condition is not a strict
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non-reflecting boundary condition, from the simulation results, it
seems to successfully convect large vortical structures out of the
domain without any reflection. Current pressure boundary condi-
tions at the inlet and outlet boundaries are imposed to be consis-
tent with the equations for the velocities, due to the staggered
grid arrangement (Ravoux et al., 2003). For temperature at the in-
let, T = 0 is specified. At the other three boundaries, the zero-nor-
mal derivative is specified. On the cylinder surface, Tw = 1 is
specified for isothermal cases, while qw = 1 is specified for iso-
heat-flux cases. Because of the one-way interaction between veloc-
ity field and temperature field, the accuracy of temperature field
does not influence velocity and pressure computations. The veloc-
ity and pressure fields for flow over a stationary or oscillating cyl-
inder have been validated previously at this Reynolds-number
range (Zhang and Zheng, 2007). Therefore, the validation in this pa-
per is for temperature only. Based on the stability requirements of
Eqs. (17) and (18), time steps are in the range of 0.001–0.01.

3.1. Verification of the numerical scheme

Grid-size independence tests have been performed to verify the
numerical scheme. The stationary cylinder case with Re = 20 is se-
lected for the tests. There are four levels of grid sizes: coarsest,
coarse, fine, and finest. The grid size of each level is 0.1, 0.05,
0.025 and 0.0125, respectively. Temperature values along the x-
axis, starting from the point on the cylinder surface at (6.9,6.4)
to the end of the domain, are used for the comparison among dif-
ferent grid levels. Norms of relative errors of temperature distribu-
tions are indicatives of accuracy of the scheme when the grid size
changes. Fig. 2 shows the L2-norm of all the temperature values
along the x-axis. Regarding the solution on the finest grid as ‘‘ex-
act”, the errors of the solution are computed on the coarser grids.
From Fig. 2, for both types of boundary conditions, we find when
changing the grid resolution, the norm shows a ‘‘�2” slope in the
log–log plot of the norm versus the grid number. This indicates
that the overall computational accuracy is second order in space,
and a grid size of 0.025 is sufficiently fine for temperature simula-
tion. The grid-independence study was performed previously for
the fluid-flow simulation (Zhang and Zheng, 2007), and a second-
order accuracy was also obtained when the same 0.025 grid size
1/dx

L 2
no
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Fig. 2. The L2-norm of the temperature along the axis versus the grid number per
cylinder diameter for steady case with Re = 20, with two types of boundary
conditions.
was selected. Therefore, for all the results shown in this paper,
the grid size of 0.025 is used.

3.2. Heat convection with flow over a stationary cylinder

Numerical solutions of low-Reynolds-number flow over a sta-
tionary cylinder is validated first. According to Zdravkovich
(1997), at the low-Reynolds-number range of Re 6 50 the vortex
structure in the wake is steady and symmetric, thus the tempera-
ture field shows similar steady and symmetric characteristics. In
the low-Reynolds-number range, Re = 20 is selected for the study.
The local Nusselt numbers on the cylinder surface are calculated
and compared with the literature data.

Present results of Nusselt number distribution on the cylinder
surface are compared with recent numerical results from Bharti
et al. (2007), and the comparisons are shown in Fig. 3. It can be
seen that the two sets of data are very close. Although Nusselt
number distributions in the isothermal and iso-heat-flux cases
are different, the patterns are similar with the two different types
of boundary conditions. The largest Nusselt number is located at
the front stagnation point of the cylinder; then the Nusselt number
decreases continuously to the rear stagnation point, with more sig-
nificant decrease in the isothermal case. For both of the cases, the
Nusselt numbers reach the lowest value at the rear stagnation
point. Also at the rear stagnation point, the difference between
the two boundary conditions is the maximum. This Nusselt num-
ber distribution is related to the velocity distribution around the
surface where higher velocity leads to a higher heat-transfer coef-
ficient. On the other hand, differences in the Nusselt number be-
tween isothermal and iso-heat-flux boundary conditions are due
to differences of temperature distribution on the cylinder surface.
Therefore, along the cylinder surface, convective-heat-transfer
coefficients are mostly higher for the iso-heat-flux case, especially
at the rear portion of the cylinder surface.

At larger Reynolds numbers (Re P 50), there is an unsteady
wake in the velocity field, i.e., the von Karman vortex sheet shed
from the cylinder surface. Because of the velocity field, a similar
shedding pattern also takes place in the temperature field. In the
unsteady cases, the time-averaged Nusselt number is used in the
discussion below. In this laminar Reynolds-number range, two
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Fig. 3. Comparisons of local Nusselt number distributions on the cylinder surface
between present results and results in the literature for the case with Re = 20. The
angle, h, is defined in the clockwise sense starting from the surface point at
(5.5,6.4).
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Fig. 4. Comparisons of local Nusselt number distributions on the cylinder surface
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and results in the literature.
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issues are interesting: one is the relation between Nusselt number
and Reynolds number; the other is the relation between Nusselt
number and the types of IB conditions. Again, the former relation
is decided by the flow velocity, while the later is related to sur-
face-temperature distribution.

The influence of Reynolds number on Nusselt number is shown
in Fig. 4, where surface Nusselt number distributions for two cases
with Re = 120 and 218 are plotted. The comparisons are made
among present results, experimental results from Eckert and Soe-
hngen (1952), and previous numerical results from Kim and Choi
(2004) and Momose and Kimoto (1999). The boundary condition
is isothermal. For the Re = 120 case, the present result matches well
with both literature data. For the Re = 218 case, the present result
under-predicts the Nusselt number on the front portion of the sur-
face, then compares better afterwards with the experimental data
than the result of Momose and Kimoto (1999). Overall, the Nusselt
number increases with the increase of Reynolds number because of
the higher flow velocity. In Fig. 4, the minimum Nusselt number
values are about the same for the two Reynolds number cases
and occur at about 130�, near the flow separation point. Unlike
the steady state case, after this point, the Nusselt numbers increase
as they approach the rear stagnation point. This is the major differ-
ence in the pattern of surface Nusselt number distribution com-
pared to the steady case, which is due to the formation of vortex
shedding that causes higher velocity near the rear part of the cyl-
inder. Compared to the steady case of Re = 20 in Fig. 3, the overall
Nusselt number increase in Fig. 4 is due to the higher velocity of
the larger Reynolds number. The difference in the rear portion of
the cylinder surface between Figs. 3 and 4 is because of vortex
shedding in the high Reynolds number cases.

Effects of two boundary conditions on Nusselt number are
shown in Fig. 5 for the case of Re = 200. The present surface Nusselt
number and temperature results are compared with the results of
Momose and Kimoto (1999), and the overall agreement is good.
The two sets of data show that the Nusselt numbers are the same
at the front stagnation point for the two different boundary condi-
tions. The two curves are separated towards downstream. It is clear
that the Nusselt numbers of the iso-heat-flux cases are larger than
those of the isothermal cases, which indicates a better convective-
heat-transfer with iso-heat-flux boundary conditions. The location
of the maximum differences between isothermal and iso-heat-flux
Nusselt number curves is at the flow separation point, instead of at
the rear stagnation point as in the steady case of Re = 20. Down-
stream of that location, the Nusselt numbers of both boundary con-
ditions increase, gradually getting closer to each other when
approaching the rear stagnation point and finally matching. Fig. 5
also shows in the iso-heat-flux cases, the Nusselt number increases
as the surface-temperature decreases. On the front surface, the
Nusselt numbers are relative higher, resulting in the lower sur-
face-temperature, while it is the opposite on the rear surface. This
inverse trend between Nusselt number and temperature also
matches the results of Momose and Kimoto (1999). In addition,
with the same Reynolds number, differences in heat-transfer be-
tween two boundary conditions are due to differences in surface-
temperature distributions.

Fig. 6 is the plot of overall Nusselt number on the cylinder sur-
face versus Reynolds number. The comparisons are between
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present results and previous experimental and numerical results,
and the agreement is good. The heat-transfer increases with the in-
crease of Reynolds number. Unsteady cases are better than steady
cases in heat-transfer because of higher flow velocity and existence
of vortex shedding that transfers more heat from the cylinder sur-
face. For the unsteady cases, heat transfer of a higher Reynolds
number flow is better because the velocity is higher and the vortex
shedding is faster. For the same flow, effectiveness of heat-transfer
is also affected by the boundary conditions, with iso-heat-flux
boundary conditions leading to better heat-transfer.

3.3. Heat convection with flow over an oscillating cylinder

Because of the immersed-boundary method used in this re-
search, we are able to simulate flow over an oscillating cylinder
with little extra computational cost. The purpose is to study the
improvement of heat transfer due to oscillating motion. Reynolds
number of 200 is selected. The setups are the same as for the sta-
tionary cylinder cases. The oscillation is in the cross-flow direction,
and has the dimensionless displacement of

dy ¼ A sinð2pftÞ; ð23Þ

where A is the dimensionless amplitude of the oscillating displace-
ment selected between 0.15 and 0.4, and f is the dimensionless
oscillating frequency. In this study, f = 0.2 is chosen, which is the
same value as the natural vortex-shedding frequency. The motion
described in the above equation is applied to all immersed bound-
ary points and there is no motion in the x direction. The fidelity of
the flow-field for the oscillating cases has been previously verified
(Zhang and Zheng, 2007). Particularly, the computational results
of fluctuation quantities have been compared with experimental
data by Griffin (1971), and a very good agreement between two re-
sults has been achieved, as shown in the paper (Zhang and Zheng,
2007).

Fig. 7 shows a snapshot of the temperature distribution for one
oscillating case with the isothermal boundary condition and
A = 0.15. Note that, there can be temperature values inside the cyl-
inder because of the IB method used. The inside values are all
greater than one in this case, thus not shown in the figure because
they exceed the contour-value range. It shares a similar pattern
with the other oscillating cases, including those with iso-heat-flux
boundary conditions. It should be pointed out that this tempera-
ture distribution is also similar to that of the stationary case, be-
cause the use of the natural shedding frequency as the oscillating
frequency leads to a similar vortex-shedding pattern. The snapshot
is at dimensionless time 100, and the cylinder is at the middle loca-
tion during its upward motion cycle. It is also observed that the
temperature distribution pattern is similar to the vortex-shedding
pattern shown in the paper (Zhang and Zheng, 2007), which pro-
vides an evidence that heat-transfer from the cylinder surface is
mostly determined by the vortex shedding in the flow.
Fig. 7. Temperature distribution contours for t
Fig. 8 is the comparisons of surface Nusselt number distribu-
tions between present results and results from Fu and Tong
(2002). In this case, Re = 200 and A = 0.4. The comparisons are at
he oscillating cylinder case with Re = 200.
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two instances during an oscillating period. One is at t = 0 when the
cylinder moves upward with maximum speed; the other is at the
time of half period when the cylinder moves downward with max-
imum speed. The agreement between the two results are good. The
maximum heat-transfer occurs at the region a little above the front
stagnation point when the cylinder moves upward, and at the re-
gion a little below the front stagnation point when it moves down-
ward (see Fig. 8). The maximum heat-transfer is due to the
maximum flow velocity at that region. The minimum heat-transfer
occurs near the flow separation point where a vortex sheds from
the surface. Figs. 9 and 10 are comparisons of surface Nusselt num-
ber and temperature between oscillating and stationary cases, for
each type of boundary conditions, respectively. These figures show
that oscillating motion improves surface heat-transfer for both
types of temperature boundary conditions, and the improvement
increases as oscillating amplitude increases. This agrees with
observations of Pottebaum and Gharib (2006). The improvement
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Fig. 10. Comparisons of local Nusselt numbers and temperature distribution
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boundary conditions.
is mostly at the front surface of the cylinder. This is because heat
transfer at the front surface is due to flow velocity, while it is
mostly due to vortex shedding at the rear surface. The oscillating
motion increases the velocity at the front surface, but does not
change much the shedding pattern at the rear surface. The
improvement is slightly larger with the iso-heat-flux boundary
condition. For the iso-heat-flux cases, the inverse trend between
surface-temperature and Nusselt number, as shown in stationary
cylinder cases in Fig. 7, can also be observed. In comparing the
two boundary conditions for oscillating cases, again, iso-heat-flux
is better in heat-transfer, similar to that in the stationary cases.

The time histories of overall (surface-averaged) Nusselt num-
bers are shown in Fig. 11 for the case of Re = 200 and A = 0.3. It
has been found that in many of the previous IB methods, overall
Nusselt number histories have kinks when IB points stride grid
lines on a Cartesian grid mesh in moving boundary problems.
The present results in Fig. 11 indeed show the small kinks in the
histories due to IB points striding grid lines, but the magnitudes
of these kinks are very small. Notice that the shapes of the top
and bottom peaks are slightly different. The reason is that, within
one oscillating period of dimensionless time 5, there are two top
peaks, each occurring when the cylinder moves across the middle
location, while the two bottom peaks occur when the cylinder
reaches the highest and lowest locations. Therefore, the curves still
show the symmetrical heat-transfer feature with respect to the up-
and-down oscillating motion due to the symmetrical vortex
shedding.

4. Conclusions

The IB method for heat-transfer applications developed in this
paper is based on a previously validated IB method for fluid flow
(Zhang and Zheng, 2007), thus it inherits the same advantages over
other IB methods. The strong points of the present method are: (1)
number of IB points independent of grid resolution to ensure the
boundary condition not only on the IB locations intersecting with
grid points, but also on the region in-between grid points; (2) easy
implementation with the weighting functions; (3) less kinks and
smoother curves in the overall Nusselt number histories when IB
points striding the grid lines on a Cartesian grid mesh. These
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advantages result in an IB method that is more accurate and easier
to implement than other methods. Comparing present results with
the experimental and numerical data in literature, good agree-
ments have been found. In particular, the fact that the present IB
method successfully treats Neumann-type IB conditions and mov-
ing boundary problems provides a strong evidence for the capabil-
ity of this method.

For the problem of flow over a circular cylinder, the Nusselt
number increases with the increase of Reynolds number. The in-
crease is mostly due to the higher flow velocity and stronger vortex
shedding. Between steady and unsteady cases, the Nusselt number
distributions show different patterns because of the presence of
the vortex shedding in the unsteady cases. Between two types of
boundary conditions, the iso-heat-flux condition is better in
heat-transfer than the isothermal condition for the same Reynolds
number. The reason is the difference in surface-temperature distri-
butions. On an iso-heat-flux boundary, the surface-temperature
changes inversely with the Nusselt numbers. When applying oscil-
lating motion to the cylinder, heat-transfer always improves, and
the improvement increases as the oscillating amplitude increases.
The region with the most improvement is the front surface, be-
cause of the increase of flow velocity due to motion. At the rear
surface, the similar shedding pattern between stationary and oscil-
lating cases leads to an insignificant improvement when the oscil-
lating frequency is the natural vortex-shedding frequency.
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